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Abstract: This paper concerns with the development of two new testbeds, the associated datasets, and the anal-
ysis of the results obtained by applying different heuristic optimization algorithms that participated in the 2018
panel and competition on ”Emerging heuristic optimization algorithms for operational planning of sustainable
electrical power systems”. This activity was organized by the IEEE PES Working Group on Modern Heuristic
Optimization (WGMHO), under the IEEE PES Analytic Methods in Power Systems (AMPS) Committee. This
competition builds upon other previous competitions focused on the application of optimal power flow (OPF) to
tackle schedulling problems of electrical power systems. Unlike the previous competitions, the new test beds con-
sider more factors reflecting the stochasticity associated to renewable power generation, controllable loads, and
electric vehicles. Developers of different emerging algorithms were challenged to perform algorithmic improve-
ments and tuning within a limited computing budget. To this aim, the organizers of the competition developed
and provided a set of encrypted codes for problem evaluation (i.e. calculation of objective function and constraints
and saving of results). The results obtained by the best performing algorithms point out the relevance of modern
heuristic optimization to tackle the complexity of stochastic OPF, without resorting to problem simplifications, and
within a restricted computing budget.

Key–Words: Heuristic Optimization, Grid Optimization Competition, Optimal Power Flow, Solar Energy, Wind
Energy.

1 Introduction

The variable nature of renewable energy variable gen-
eration introduces high stochasticity into the the op-
erational planning of electrical power systems. From
mathematical point of view, the different formulationa
of the so-called optimal power flow (OPF), which
are applied into different types of scheduling prob-
lems involved in operational planning, should account
for non-linear models for power flow calculation and
evaluation of technical constraints, and probabilistic
models that represent the random fluctuations of re-
newable power generation, demand, and failures. In
addition, with higher penetration of renewables, this
entails performing search for optimum solutions wi-
htin a complex search space defined by a large num-
ber of mix-integer decision variables. Such computa-
tional complexity (i.e. multi-modality, non-convexity,
discontinuity) and scalability cannot be tackled by
classical optimization tools.

Heuristic optimization algorithms constitute an
attractive option. Classical and emerging heuris-
tic optimization algorithms are undergoing signif-
icant improvements to prevent stagnation and en-
hance the computational efficienty. However, most
of these new developments have been tested in differ-
ent types of theoretical optimization problems. Thus,
the Working Group on Modern Heuristic Optimiza-
tion (WGMHO), under the IEEE PES Analytic Meth-
ods in Power Systems (AMPS) Committee, pursues
the development of different types of optimization test
beds in the field of electrical power systems.

This task started in 2014 with the development of
a test bed for active and reactive power dispatch based
on OPF formulation with AC equations for power
flow calculation and consideration of N-1 operational
states. In 2017, the next step was to extend the OPF
formulation into the probabilistic context to account
for the stochasticity of power generation. This pa-
per overviews the results of the work carried out for a
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special panel and competition organized for the 2018
IEEE PES General Meeting. Concretely, two new test
beds are introduced:

Test bed 1: Stochastic OPF in Presence of Re-
newable Energy and Controllable Loads. The target
is to miminize the total cost of the traditional genera-
tors plus an uncertainty costassociated with renewable
generators. The problem evaluation (i.e., calculation
of objective function and constraints) is implemented
based on the active-reactive OPF formulation. The
IEEE 57-bus system was selected as a case study.

Test bed 2: Dynamic OPF in Presence of Renew-
able Energy and Electric Vehicles. The target is to
minimize the total fuel cost of traditional generators
plus the expected uncertainty cost for renewableen-
ergy generator plus the expected uncertainty cost for
electric vehicles. The problem evaluation (i.e., cal-
culation of objective function and constraints) is im-
plemented based on the active-reactive OPF formula-
tion. The IEEE 118-bus system was selected as a case
study.

The paper also provides datasets associated to the
codes implemented and provided by the authors (who
chaired the panel session at the 2018 IEEE PES Gen-
eral Meeting) to the contestant algorithms. The de-
velopers of each algorithm had the exclusive mission
of performing algoritmic modifications and tuning of
the the parameters invovled in the different opera-
tions and rules of the corresponding contestant algo-
rithm. The developers were allowed to these tasks
by considering a restricted number of function eval-
uations, since a limited computing budget is aligned
with usual practice in electrical power engineering for
selection and evaluation of any type of optimization
solver. It is worth mentioning that, in other fields of
study, the evaluation of performance of the algorihms
sometimes also involves metrics concerning the char-
acteristic of the convergece throughout the search pro-
cess. However, this is out of the scope of this paper.

The reminder of the paper is structured as fol-
lows: Section 2 overviews the general aspects of the
competion and its timeline. Sections 3 and 4 present
in detail the two proposed testbeds. Section 5 shows
ths adopted evaluation criteria. The best performing
metaheuristic algorithms are presented and analyzed
in section 6. Finally, concluding remarks are given in
Section 7.

2 Competition structure and sched-
ule

The employment of high-level optimization tech-
niques to solve power system optimization problems
is getting significant attention because of their po-
tential to deal with inherent mathematical complexi-
ties such as high-dimensionality, non-linearity, non-
convexity, multimodality and discontinuity of the
search space [1, 2].

As a result of this, the WGMHO coordinated a
special panel in the 2014 IEEE PES General Meet-
ing, which consisted of a competition focusing on the
application of heuristics for solving Optimal Power
Flow (OPF) problems. That was the first step to-
wards the development of power system optimiza-
tion testbeds, which are aimed at establishing and per-
forming comparative analysis on the general applica-
bility and effectiveness of emerging tools in the field
of heuristic optimization. The next steps ware done in
the competitions organised in 2017 and 2018 .

The 2018 Competition on Operational planning
of sustainable power systems, proposed by WGMHO,
introduced two benchmark problems (also denoted as
optimization testbeds):

• Test bed 1: Stochastic OPF in Presence of Re-
newable Energy and Controllable Loads.

• Test bed 2: Dynamic OPF in Presence of Renew-
able Energy and Electric Vehicles.

The problems to be solved were treated as
black box problems (inputs: decision variables, out-
puts: stochastic objective function, constraints value),
which should be solved for different stochastic sce-
narios based on probability distributions of wind
speed, solar irradiance and river flow over an IEEE
57 bus test system. The participants were requested
to exclusively work on the implementation of the par-
ticular heuristic optimization algorithm to be used,
which could include any special strategy for con-
straint handling, strategy for consideration of stochas-
tic variables, or treatment of discrete/binary optimiza-
tion variables related to the transformers and compen-
sation devices [3].

The timelime of the activities carried out was as
follows:

• 4 January 2018: Call for competition.

• 20 January 2018: Confirmation of participation.

• 20 March 2018: Submission of results and
codes.

• 28 April 2018: Announcement of the best two
ranked algorithms.

• 5-10 August 2018: Presentation of the winners
at the IEEE PES General Meeting.

3 General description of Testbed 1

3.1 Target function

The target of an OPF is to allocate generator units so
as to supply the demand, by minimizing the cost of
the latter, while fulfilling technical constrants in the
power system (associated to Nodal voltages, nodal
balance power, maximum power output from slack
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generator, generator active power capability, among
others). The search for the optimum solution can be
tackled by using different mathematic tecniques and
new mathematical programming tools [4].

In the test bed 1, the target is to miminize the total
cost of the traditional generators plus an uncertainty
cost associated with renewable generators. All gen-
erators are considered dispatchable, but owing to the
volatilty of the primary source of the renewable en-
ergy based generation, they will have an uncertainty
cost which is divided into over and under estimated
condition, respectively. This relays on the availability
of the primary energy source [5].

As the primary energy source of a renewable gen-
erator is volatile, it may be represented, in some cases,
by a probability distribution function. Through such
function, one can obtain one probability function of
the available power [6]. Based on this function, it is
possible to carry out several Monte Carlo simulation
to find all possible scenarios of the available power.
As indicated previously, it is considered tha there are
two different cases: Under and over estimated. The
steps of the simulation are summarized here, accord-
ing to [6]:

i Generate a random primary energy source value
(following the probability distributoin of the
wind speed, solar irradiance or the river flow) of
scenario j.

ii Calculate the available real power for the sce-
nario j when renewable enery generator i is used
Pi,j .

iii Verification of the underestimated (PSi < Pi,j)
or overestimated (PSi > Pi,j) condition in sce-
nario j. PSi corresponds to the decision variable
describing renewable energy generator i.

iv Calculate the uncertainty cost for scenatio j:

[Ci, j = Cu(Pi,j − PSi); if ;PSi < Pi,j ] (1)

[Ci, j = Cu(PSi − Pi,j); if PSi > Pi,j ] (2)

v Repeat the steps i to iv N times (in the 2018
competition N is set to 2000 times).

vi Build the histogram of the uncertainty cost for
the N scenarios.

vii Calculate the expected cost of the uncertainty
cost function for renewable energy generator i
in the considered Monte Carlo simulation.

The competitors are provided with a main code
which compiles the results and gather it in ASCII-
files.

Figure 1: Flow Chart for the main code in the 2018
Competition

3.2 Uncertainty cost functions

As the available power of a renewable generator is un-
known till the moment of generation, the cost of the
power is calculated by using Uncertainty cost func-
tions [7]. Such cost relies on the type of renewable
energy as shown as follows.

3.2.1 Wind Study Case

In this case, it is considered that the wind follows a
Rayleigh probability distribution for underestimated
condition (3) and overestimated condition (4) .
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3.2.2 Solar Study Case

In this case, it is considered that the solar irradiance
follows a Log-Normal probability distribution. The
Uncertainty Cost both in subestimated and overesti-
mated case has 2 coditions A and B, which depends
on the comparison between the available real power
and reference irradiance power (underestimated (5)
ans (6) or overestimated (7) and (8) ):

E[CPV ,u,i(WPV ,s,i,WPV ,i), A] =
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3.2.3 Electric Vehicle Study Case

In this case, it is considered that the solar irradiance
follows a Log-Normal probability distribution.

• Underestimated condition.

E[Ce,u,i(Pe,i, Pe,s,i)] =

ce,u,i
2
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• Overestimated condition.
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3.3 Multiple set of Monte Carlo simulations
and controllable load consideration

In the 2018 competition multiple set of Monte Carlo
simulation are considered i.e. the uncertainty cost is
made up of several scenarios of primary energy, and
a set of the same decision variables will result in a
different expected value.

Controllable loads (CL) are an effective way of
reducing stress on the power system and peak shifting
in areas with heavy load [8]. So, they are included in
the 2018 competition, in a way of ”capacity block ad-
justment method”, which means that a compensation
price is given for the total load that is interrumped by
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Table 1: Compensation price per interrumped capac-
ity block

Block # Power interrumped Prices
Block I (80%-95%)*PIL C1
Block II (65%-80%)*PIL C2
Block III (50%-65%)*PIL C3

the optimization algorithm. In table 1 the compensa-
tion ranges are shown, here PIL refers to the actual
demand of the interrumpible load.

This is seen in the optimization problem, as one
term which is added to the objective function. Such
term is the multiplication of the compensation price
(Cj) by the difference between the actual demand and
the demand dispatched by the optimization algorithm.

3.4 Test bed 1 and the IEEE 57 bus system

The IEEE 57 bus system has 7 generators. In test bed
1, three of this generators are assigned as reneweables
energy based generation located at buses 2, 6 and 9.
From the total 42 loads in IEEE 57, 4 are considered
controllable in test bed 1, that is, the ones at buses 8,
12, 18 and 47. The objective function, the constrains,
and the optimization variables are explained as fol-
lows [6]:

• Constrains:

0 Power flow constrains: Related to nodal
balance of power (equality constrains).

1 Constrains penalized in fitness function.
– Nodal voltages for load buses

(42+42).
– Allowable branch power flows (80).
– Generator reactive power capability

(7+7).
– Maximum reactive power output of

slack generator (1).
For normal (non-contingency) and selected
N-1 conditions, that is to say 179 for non-
contingency conditions, and 178 for each
N-1 condition.

2 Mimimum and maximum level of opti-
mization variable (2x35).

• Optimization varibles: 35 variables, compris-
ing 13 continuous variables related to genera-
tor’s actve power outputs (6, the slack is not con-
sidered here, since the injected power is given
by the power flow) and generator’s bus volt-
age set-points (7), 15 discrete variables related
to stepwise adjustable on-load transformer’s tap
positions, 3 binary variables related to switchble
shunt compensation devices and 4 controllable
loads.

• Considered contingencies (N-1 Conditions):
Outages at branches 8 and 50.

• Number of function evaluations: 30000.

• Cases: Five case studies of different combina-
tions of renewable energy based generators.

3.5 Cases overview

For the 2018 competition, there are 5 cases studies.
Each one with a different mix of renewable generators
and controllable loads. Competitors had to select the
case in the provided ”.main” file. The cases are briefly
described as follows [6]:

3.5.1 Case study 1: Stochastic OPF for IEEE 57
bus system considering wind energy:

• Wind generators: Three wind generators with
Weibull probability distribution function, at
buses 2, 6 and 9.

• Solar PV generation: 0.

• Small-hydro generator: 0.

• Controllable load: At buses 8, 12, 18 and 47.

3.5.2 Case study 2: Stochastic OPF for IEEE 57
bus system considering wind energy, solar
energy:

• Wind generators: Two wind generators with
Weibull probability distribution function, at
buses 2, 9.

• Solar PV generation: One solar PV generator
with log-normal probability distribution func-
tion, at bus 6.

• Small-hydro generator: 0.

• Controllable load: At buses 8, 12, 18 and 47.

3.5.3 Case study 3: Stochastic OPF for IEEE 57
bus system considering wind energy, solar
energy and Small-hydro and controllable
loads:

• Wind generators: One wind generators with
Weibull probability distribution function, at bus
3.

• Solar PV generation: One solar PV generator
with log-normal probability distribution func-
tion, at bus 6.

• Small-hydro generator: One Small-hydro gen-
erator with Gumbel probability distribution
function, at bus 9.

• Controllable load: At buses 8, 12, 18 and 47.
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3.5.4 Case study 3: Stochastic OPF for IEEE 57
bus system considering wind energy, solar
energy and Small-hydro and controllable
loads:

• Wind generators: One wind generators with
Weibull probability distribution function, at bus
3.

• Solar PV generation: One solar PV generator
with log-normal probability distribution func-
tion, at bus 6.

• Small-hydro generator: One Small-hydro gen-
erator with Gumbel probability distribution
function, at bus 9.

• Controllable load: At buses 8, 12, 18 and 47.

3.5.5 Case study 4: OPF using an Analytical Un-
certainty Cost function for IEEE 57 bus
system. Considering wind generators and
Controllable loads

In this case study, analytical cost functions are used to
calculate the expected uncertainty cost, as it is proved
in [7]. The expression for wind energy is named
”Wind Uncertainty Cost Function”, taking into ac-
count the Weibull distribution. So, the competitors
have to use such equation and obtain the scheduled
power, which depends on the decision variable.

3.5.6 Case study 5: OPF using an Analytical Un-
certainty Cost function for IEEE 57 bus
system. Considering wind and solar gen-
erators and Controllable loads

In this case study, analytical cost functions are used to
calculate the expected uncertainty cost, as it is proved
in [7]. The expression for wind energy is named
”Wind Uncertainty Cost Function”, taking into ac-
count the Weibull distribution. The expression for
solar generation is named ”Solar Uncertainty Cost
Function”, and takes into account the log-normal dis-
tribution. So, the competitors have to use such equa-
tions and obtain the scheduled power, which depends
on the decision variables.

4 General description of Testbed 2

In this test bed, electric vehicles are included as dis-
patchable units, besides test bed 2 takes into account
several time instances. The electric vehicles have
associated a normal probability distribution function
[7], so as to determine wether they act as a generator
(vehicle to grid) or as load (vehicle battery charging).

This test bed is a active-reactive power dispatch
problem, that has an cost-function contrains describ-
ing the system in a time instance. In the 2018 com-

petition six time instances, so test bed is a dynamic
OPF [6].

4.1 Test bed 2 and the IEEE 118 bus system

The IEEE 118 bus system has 54 generators, and, in
this test bed, 4 generators are considered as renew-
ables (2 wind and 2 solar PV). Also, there are 4 elec-
tric vehicles and 6 time instances [3].

• Objective: Minimize the total fuel cost of tra-
ditional generators plus the expected uncertainty
cost for renewable energy generator plus the ex-
pected uncertainty cost for electric vehicles.

• Optimization variables: 6x130, where 130 en-
compasses 107 continuous variables decribing
generator active power outputs (53, the slack
generator is not considered here, sice the injected
power is given by the power flow calculation)
and generator bus voltage set-points, 54), 9 dis-
crete variables related to stepwise adjustable on-
load transformer’s tap positions, 14 binaty vari-
ables linked to switchable shunt compensation
devices.

• Constrains: There are 3 types of constrains:

i Power flow constrains These are related
to nodal balance of power (equality con-
straints). Each time instance in the dy-
namic OPF, has a different demand condi-
tion.

ii Constrains penalized in the fitness func-
tion.

– Nodal voltages for load buses:
6x(99+99).

– Allowable branch power flows:
6x(186).

– Generator reactive power capabitility:
6x(54+54).

– Maximum active power output of a
slack generator: 6x(1).

The penalization is done for for nor-
mal (non-contigngency) and selected N-
1 conditions i.e. 493 constraints for
non-contingency conditions, and 492 con-
straints for each N-1 condition in each time
instance.
Additionally, ramp constrints are consid-
ered, i.e. the generation change between
two instances must not be greater than a
limit (the number of constraints in this case
would be 5x53, 5 because there are 6 time
instances, and 53 because there are 53 lo-
cation varibales related with active power
generation). The total number of constrains
is: (6x493)+(6x492)+(5x53).
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iii Minimum and maximum levels on opti-
mization variables (6x130x2).

• Considered contingencies (N-1 conditions):
Outage of branches 21, 50, and 48.

• Number of function evaluations: 9000 power
flows, for 6 time instances.

5 Evaluation guidelines

The ranking is calculated based on statistics of the
best fitness value fbest for every case and test bed.
The evaluation is carried out from 31 runs considered
for the competition. In this way, the succes of single
case (or scenario) is given by [6]:

Score = mean(fbest) (11)

Where mean stands for mean value of the total
number of scenarios. The ranking is based on the in-
creased order of the Totalscore as shown in equation
(12).

Totalscore =

Nscenario∑
i=1

scorei (12)

The ranking is based on increasing order of each
participant, as it was done on the 2017 competition
[9]. As it can be seen from equation (12), the Total
score does not take into consideration the time spent
for the algorithm, but a convergence signal may be
used also for evaluation in future competitions. In this
competition, this is not relevant.

The participants received one encrypted file
called ”test bed OPF.p” which automatically cal-
culates the fitness function for a set of decision vari-
ables, by using equation (13).

fitness(decision variables) : objective function+

ρ
constraints∑

i=1

max[0, constraints violation]2

(13)

Where ρ is a penalty factor that is 1E+7 for test
bed 1 and 1E+4 for test bed 2.

6 Competition results and meta-
heuristics

This section shows the results of the 2018 competition
for test bed 1 and 2. The contestant algorithms are
shown in Table 2.

6.1 Test bed 1: Competition results

Table 3 shown the official results of the 2018 compe-
tition for test bed 1, and its statistic parameters.

6.2 Test bed 2: Competition results

6.3 Overview of best performing methods

In this section the the best ranked methods are briefly
overiewed.

6.3.1 CE+EPSO

CE + EPSO is the combination of two optimization
methods: Cross-Entropy (CE) and Evolutionary Par-
ticle Swarm Optimization (EPSO) [6]. The CE is an
optimization method used to solve well-known prob-
abilistic problems, it is used because it provides a fast
way of deriving, by using updating/learning rules and
simulation theory. CE method involves the following
two phases [10]:

• Generate a random data sample (trajectories,
vectors, etc) according to a mechanims.

• Update the parameter so that the next sample
performs better.

EPSO is one meta-heuristic optimization method,
it is an hybrid between Evolutionary Strategies (ES)
and Particle Swarm Optimization (PSO) proposed by
Vladimiro Miranda, the algorithm consists in the fol-
lowing steps [3]:

• Replication: each individual is replicated r times.

• Mutation: the r clones have their weights w mu-
tated.

• Recombination: the r+1 individuals generate one
offspring.

• Evaluation: each offspring has its fitness evalu-
ated.

• Selection: the best particle out of the r+1 sur-
vives to be part of a new generation.

6.3.2 Entropy Enhanced Covariance Matriz
Adaptation Evolution Strategy (EE-
CMAES)

This is a combination of two optimization methods:
Entropy Enhanced (EE) and Covariance Matriz Adap-
tation Evolution Strategy (CMAES). EE is a heuris-
tic method for solving optimization problems, and in-
volves two phases [11].

• Generation of a sample of random data accord-
ing to a specified random mechanism.

• Updating the parameters of the random mecha-
nism, typically parameters of pdfs, on the basis
of the data, to produce a better sample in the next
iteration.

In the CEMAES, there are 2 principles [11]:
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Table 2: Participants in the 2018 IEEE PES WGMHO competition on operational planning of sustainable electrical
power systems

Team Algorithm
1 Improved Chaotic Differential Evolutionary Particle Swarm Optimization (ICDEPSO)
2 Entropy Enhanced Covariance Matriz Adaptation Evolution Strategy (EECMAES)
3 Shrinking Net Algorithm (SNA)
4 CE+EPSO
5 Artificial Bee Colony (ABC)

Table 3: Official ranking for the IEEE PES WGMHO Emerging heuristic optimization algorithms for operational
planning of sustainable electrical power systems - Test bed 1

Number Algorithm Case 1
Score

Case 2
Score

Case 3
Score

Case 4
Score

Case 5
Score

Total
Score Ranking

1 ICDEPSO 84,565.0 71,132.5 58,129.5 88,367.1 71,953.3 374,147.6 3
2 EECMAES 81,382.6 68,519.1 56,032.9 84,348.3 71,033.3 361,316.3 2
3 SNA 85,649.2 71,037.0 59,203.5 86,354.0 73,984.2 376,228.177 4
4 CE+EPSO 81,077.0 68,473.4 55,935.6 84,442.9 71,065.9 360,994.9 1
5 ABC 141,249.2 119,775.0 136,899.9 121,928.2 112,077.1 631,929.7 5

• Maximum-likelihood principle, based on the
idea of increasing the probability of successful
candidate solutions and search steps.

• Two path of the time evolution of the distribution
mean of the strategy are recorded, called search
or evolution paths.

6.3.3 Improved Chaotic Differential Evolu-
tionary Particle Swarm Optimization
(ICDEPSO)

This method combines Improved Chaotic Differen-
tial (ICD) and the EPSO method shown in section
6.3.2. Evolutionary algorithms relies on the random
secuence of variations operators. Recently chaotic se-
quences have been used in heuristic algoritms, pro-
ducing good results [12]. This is because the algo-
rithm can escape from local mimimum points.

7 Conclusions and final remarks

This paper described two new testbeds concerning the
optimal schedulling (active-reactive power dispatch)
of generation in power systems dominated by renew-
ables, and with the presence of controllable loads and

electric vehicles. These test beds were used in the
2018 IEEE PES WGMHO panel and competition on
Emerging heuristic optimization algorithms for oper-
ational planning of sustainable electrical power sys-
tems. The test beds were coded in Matlab based on
a open source tool for power flow calculation. Algo-
rithm developers can easily use these codes to test-
ing their new developments. Like in the competition,
the codes shall be treated as black-box, and the chal-
lenge is to beat the best performing algorithms within
the same restricted computing budget. Remarkably,
CE+EPSO was found to be successful in solving both
test beds (i.e. different OPF formulations and opera-
tional scenarios). This finding is an important step in
the ambition of achieving powerful algorithms to sup-
port power system operational planning in real prac-
tice. The WGMHO will continue its mission of de-
veloping more test beds. The next stage is the de-
velopment of problems in the field of power system
planning.
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